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Abstract – A digital signal processor for Doppler radar sensing 
of vital signs is described. A voltage waveform signal 
containing respiration and heartbeat signatures is low-pass 
filtered (0.7 Hz) for the respiration and band-pass filtered (1.0 
– 3.0 Hz) for the heart signal. The autocorrelation function is 
used to calculate the rate per minute for each of these signals. 
To make the processor more robust, several signal processing 
techniques are applied. One of these techniques, a method 
commonly used on audio signals for formant removal, is called 
center clipping. Another technique is the use of a Hanning 
window. To reverse the distinct shape left by the Hanning 
window an “undo” window is applied. The processor is 
programmed in LabVIEW. 
Keywords – DSP, Doppler, heart rate, respiration rate, 
autocorrelation, center clipping, Hanning window. 
 

  I. INTRODUCTION 
 

The treatment of thorax-related illnesses is becoming 
an increasing problem worldwide. An estimated one 
hundred million Americans suffer from chronic health 
conditions including heart disease, lung disorders and 
diabetes, and treatment for these conditions accounts for 
three-fourths of total US healthcare costs [1]. 
Consequently, there is a growing market for appliances that 
allow both remote monitoring of health parameters and 
transfer of the recorded data to a physician, for convenience 
and cost reduction. Non-invasive sensing of circulatory and 
respiratory movements with a microwave Doppler radar [2] 
can be used for such remote monitoring. By applying 
telecommunication devices and frequencies for this remote 
sensing, the existing telecommunication network can 
eventually be used to facilitate the transfer of patient data to 
health care professionals [3]. 

Microwave Doppler radar monitoring of respiratory 
[4], cardiac [5] and arterial [6] movements was 
demonstrated with commercially available waveguide X-
band Doppler transceivers in the late 1970’s. In the late 
1980’s a portable microprocessor-based non-invasive 
cardiopulmonary heart rate monitor was demonstrated [7]. 
Although it employed simple digital algorithms to 
determine the heart and respiration rates, the heart rate 
monitor relied on analogue filters to separate the heart and 
breathing signals. A bank of batteries provided the power 
for the entire system, making portability difficult. 

Because of the recent rapid expansion of wireless 
communications and information technology, smaller, 
lighter, and less expensive circuitry is readily available 
today. Similar advances in the field of digital signal 
processing (DSP) open up countless new possibilities. The  

speed doubling of chips every 18 months (Gordon Moore’s 
“law”) is allowing more complex calculations to be 
performed in ever shorter amounts of time. Bulky analog 
filters can now be replaced by software implemented 
algorithms. These technological advances make the 
construction of a mobile remote monitoring station very 
feasible. Systems employing digital signal processing 
already exist [8], but these systems rely on contact 
measurements. While such non-invasive measurement 
systems do not compromise the physiological integrity of 
the subject, in some situations the use of contact sensors 
may still be disruptive or otherwise unsuitable [2]. A less 
disruptive non-contact system can be realized by 
combining a small microwave radio for Doppler radar 
sensing [9] with the corresponding digital signal processing 
software. A consequence of this system, however, is that 
the received signals are corrupted with much more noise 
than those obtained with contact measurements. Therefore, 
a robust digital signal processor is necessary to correctly 
extract useful data. 

In this paper, a digital signal processor for Doppler 
radar sensing of vital signs, implemented in LabVIEW 
[10], is described. Several implemented techniques are 
described which make the processing more robust. 
Respiration and heart rates are successfully extracted from 
signals received from distances of up to two meters from 
the subject. 
 

II. METHODOLOGY 
 

According to Doppler theory, a constant frequency 
signal reflected off an object with a periodically varying 
displacement will result in a reflected signal at the same 
frequency, but with a time varying phase, φ(t). The 
reflected signal is effectively phase modulated (PM). If the 
change in displacement is small compared to the 
wavelength of the signal, the phase change will be small, 
and the PM signal can be directly demodulated by mixing it 
with a portion of the original signal [9]: 
  
sin(ωt+φ(t)) · cos(ωt) = sin(φ(t)) + high frequency terms (1) 

 
where cos(ωt) is the original signal with constant frequency 
ω, and sin(ωt+φ(t)) the reflected signal with phase shift. 
The right hand side of (1) can then be filtered for the phase 
shift term sin(φ(t)) [3]. The phase can be extracted from 
this term by using a small signal approximation: sin(φ(t)) ≈ 
φ(t) for small φ(t).  
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Analogous to the phase shift on a transmission line 
terminated with a load at a varying position, this time 
varying phase is proportional to the displacement, x(t):  
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where λ is the wavelength of the signal. The demodulated 
signal is thus proportional to the periodic displacement of 
the reflecting object, as in (2). If the change in 
displacement is small compared to the wavelength, the 
demodulated signal is proportional to the periodic 
displacement of the reflecting object. If this object is a 
person’s chest, the demodulated voltage waveform 
represents displacement due to respiration and heart 
activity. 

A block diagram of the signal processor is displayed in 
Fig. 1. The incoming demodulated voltage waveform was 
filtered in such a way as to separate the two components. 
The subject’s normal (resting) respiration lay somewhere in 
the order of 20 breaths per minute. The chosen range for 
the respiration was between 0 and 40 breaths per minute. A 
4th order low-pass Butterworth filter with cut-off frequency 
at 0.7 Hz selected signals in the mentioned range. The 
resting heart rate of the subject varied anywhere between 
60 and 120 beats per minute. A 4th order band-pass 
Butterworth filter with cut-off frequencies at 1 and 3 Hz 
selected an adequate range of 60 – 180 beats per minute. 

A sliding window was then passed over the waveform. 
All calculations were performed on the data inside the 
window. A typical window size was 10 seconds: this 
interval provided enough data for reliable calculation, but 
could still track rapid changes in heart or respiration rate. 
The sliding window was shifted over the waveform in one 
sample increments. Up to 50 samples per second could still 
be handled in real-time in a 10 second window. After 
windowing some enhancements techniques were applied to 
improve the quality of the two separated signals. One 
technique was using a Hanning window, which prevented 
spectral leakage and improved the analysis of acquired 
signals. Unfortunately, it also left a distinct shape on the 
autocorrelation function response. This was remedied, 
however, by multiplying the result of the autocorrelation by 
the inverse of the Hanning window (a so called “undo” 
window). 

Another enhancement technique used was a center  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.1. Block diagram o

clipper [11]. This function, commonly used in the 
processing of audio data, was used to remove unwanted 
peaks in the signal. The center clipper function was defined 
as follows: 
 

c(n)        = 0          if |s(n)| ≤ k⋅amax 

                                   = s(n)      if |s(n)| > k⋅amax                        (3) 
 
where c(n) was the output signal, s(n) the input signal, and 
amax was the maximum amplitude of the signal in the 
specified window. The user could set the factor k, and it 
determined the threshold at which the signal was cut off. 
An illustration of the process of center clipping is shown in 
Fig. 2.  

After these enhancements, the actual determination of 
the respiration and heart rate starts. A commonly used 
method to determine the period of a signal is the 
autocorrelation function [8]. One of the properties of the 
autocorrelation function is that if the input signal contains a 
periodic component, the autocorrelation function will 
contain a periodic component with the same frequency.  

The resulting output signal after autocorrelation 
contained peaks at integer intervals of the period of the 
signal. The peak finding used an algorithm that fitted a 
quadratic polynomial to a sequential group of three 
samples. This group was moved in one sample increments 
inside the window. The slope of the second derivative of 
the fit was checked to determine if a peak or valley 
occurred. Using these peaks, the period of a given signal 
could be determined. The average period, taken over the 
first three peaks on either side of the 0-lag peak, was used. 
It was then straightforward to determine the rate per minute 
of the given signals.  

The test signals used as input were taken in an 
anechoic chamber, using a directional antenna facing a test 
subject seated at a distance varying between 1 and 2 meters 
[9]. The received signal was passed through a 12 dB/octave 
roll-off band-pass filter (Stanford Research Systems 
SR560) with 0.03 – 10 Hz bandwidth. This was done as a 
simple means to eliminate DC offset, avoid aliasing and 
minimize out of band noise. As a result, the resolution of 
vital sign fluctuations in each sample was optimized.  
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TABLE I 
RESULTS OF TELESENSOR 

 Success ratioa) of heart rate recovery 
[%] 

Dataset 1 93.84 
Dataset 2 88.93 
Dataset 3 92.53 

a) Success ratio is the percentage of time the calculated rate is within   
2% of the reference rate. 

 
Analog to digital conversion was done with a HP Infinium 
digital oscilloscope (HP 54815A), with a sampling rate 
varying between 25 and 50 samples per second.  

For these test signals, the success ratio was calculated. 
This ratio was defined as the percentage of time the 
calculated rate was within 2% of the reference rate. The 
success ratio was not calculated for the first three seconds, 
since this interval did not contain enough information to 
calculate the heart rate. Since there was no reference 
available for a breathing signal, it was not possible to 
calculate its success ratio. 
 

III. RESULTS 
 

Some representative results of the digital signal 
processor have been displayed in Table I. Dataset 1 was a 
20 second sample taken with a 2.4 GHz carrier wave from 
an antenna placed at 1 meter from the subject. Dataset 2 
was a 20 second sample using an 850 MHz carrier wave 
from a distance of 1 meter. The last set, dataset 3 utilized a 
2.4 GHz wave to obtain a 25 second sample also from a 
distance of 1 meter. The first two sets had a sample rate of 
50 samples per second. The last set had a sample rate of 25 
samples per second. The window size used on each of the 
datasets was 10 seconds. The center clipper factor was set 
to 0.2, which was slightly lower than the value typically 
used in audio applications (0.3).  

 

 
Fig. 3. Wide-band (at 1 meter distance), respiration (0.00 - 0.70 Hz), 

heart (1.00 – 3.00 Hz) and pressure pulse reference signals. 
 

Fig. 4. Autocorrelated signals corresponding to the respiration, heart and 
reference signals shown in Fig. 3. 

 
IV. DISCUSSION 

 
Part of a given dataset, taken with an antenna frequency of 
2.4 GHz at a distance of 1 meter for a duration of 20 
seconds, is shown in Fig. 3. It can be seen that the 
respiration (second trace) and heart signature (third trace) 
can be recovered from the original raw (wide-band) signal 
(top trace). A finger pressure pulse sensor (UFI-1010 pulse 
transducer) is used during the measurements to provide a 
reference signal for heart activity (bottom trace). In Fig. 4 
the calculated autocorrelation function is shown. From the 
peaks, marked with small squares, the respiration and heart  
rate are calculated to be 17 breaths per minute and 77 beats 
per minute, respectively. The calculated heart rate 
corresponds quite well to the reference heart rate, which is 
also 77 beats per minute.  

The calculated history plot of dataset 2 is shown in Fig. 
5. The calculated heart rate, after an initial settling time of 
3 seconds, tracks the reference rate within a couple of beats 
(Fig 5(a)). The breathing takes a bit longer to settle, about 5 
seconds (Fig. 5(b)). This is due to the larger period of the 
breathing signal. 

The use of the center clipper, as illustrated in Fig. 6, 
eliminates peaks that are not associated with the 
fundamental of the heartbeat. A closer analysis of the 

 (a) 

(b) 
 

Fig. 5. History windows showing the calculated (black) and reference 
(gray) heart rate (a) and the calculated respiration rate (b). 

 



 

 

Fig. 6. Center clipped heart rate signal, showing the clipping of the 
secondary beat. 

 
cardiac pulse, shown as “heart” in Fig. 3 shows a small 
spike halfway each heartbeat. This is known as the dicrotic 
notch, which signifies a sudden drop in pressure after 
systolic contraction. It is caused by a small reflux flow of 
blood back into the aortic valve and coronary vessels. This 
dicrotic notch in the heart signal is clipped. This can be 
seen clearly in Fig. 6 at time intervals 2 and 9 seconds. 

There are several reasons why the signal processing is 
done digitally. Before any information can be extracted 
from the demodulated voltage waveform, the heart and 
respiration signals need to be separated. This can be done 
by using hardware ([7], [9]), such as analog filters and 
amplifiers, or by using digital signal processing software. 
Digital processing offers implementation flexibility, filters 
with closer tolerances, utilizes fewer components and has 
an overall lower price. DSP software not only replaces 
hardware filters for separation of heart and breathing 
signals, but also provides convenient means of extracting 
heart and breathing rates. For these reasons a digital signal 
processor called TeleSensor is developed.  
 

IV. CONCLUSION 
 

A signal processor for the determination of respiration 
and heart rates in Doppler radar measurements is described. 
The processor can reliably calculate both rates for a subject 
at distances as large as two meters. The rate determination 
is based on autocorrelation and uses several enhancement 
techniques, including a center clipper. Several 
representative results are included to show the future 
potential of using the processor for this purpose. Calculated 
heart rates agree for over 88% of the time with the 
reference rate, within a 2% margin, for all datasets. These 

results indicate excellent prospects for remote monitoring of 
vital signs through non-contact radar techniques.  
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